35 research outputs found

    Approximation of Continuous-Time Infinite-Horizon Optimal Control Problems Arising in Model Predictive Control - Supplementary Notes

    Full text link
    These notes present preliminary results regarding two different approximations of linear infinite-horizon optimal control problems arising in model predictive control. Input and state trajectories are parametrized with basis functions and a finite dimensional representation of the dynamics is obtained via a Galerkin approach. It is shown that the two approximations provide lower, respectively upper bounds on the optimal cost of the underlying infinite dimensional optimal control problem. These bounds get tighter as the number of basis functions is increased. In addition, conditions guaranteeing convergence to the cost of the underlying problem are provided.Comment: Supplementary notes, 10 page

    On the Approximation of Constrained Linear Quadratic Regulator Problems and their Application to Model Predictive Control - Supplementary Notes

    Full text link
    By parametrizing input and state trajectories with basis functions different approximations to the constrained linear quadratic regulator problem are obtained. These notes present and discuss technical results that are intended to supplement a corresponding journal article. The results can be applied in a model predictive control context.Comment: 19 pages, 1 figur

    Distributed Event-Based State Estimation for Networked Systems: An LMI-Approach

    Full text link
    In this work, a dynamic system is controlled by multiple sensor-actuator agents, each of them commanding and observing parts of the system's input and output. The different agents sporadically exchange data with each other via a common bus network according to local event-triggering protocols. From these data, each agent estimates the complete dynamic state of the system and uses its estimate for feedback control. We propose a synthesis procedure for designing the agents' state estimators and the event triggering thresholds. The resulting distributed and event-based control system is guaranteed to be stable and to satisfy a predefined estimation performance criterion. The approach is applied to the control of a vehicle platoon, where the method's trade-off between performance and communication, and the scalability in the number of agents is demonstrated.Comment: This is an extended version of an article to appear in the IEEE Transactions on Automatic Control (additional parts in the Appendix

    Online Learning under Adversarial Nonlinear Constraints

    Full text link
    In many applications, learning systems are required to process continuous non-stationary data streams. We study this problem in an online learning framework and propose an algorithm that can deal with adversarial time-varying and nonlinear constraints. As we show in our work, the algorithm called Constraint Violation Velocity Projection (CVV-Pro) achieves T\sqrt{T} regret and converges to the feasible set at a rate of 1/T1/\sqrt{T}, despite the fact that the feasible set is slowly time-varying and a priori unknown to the learner. CVV-Pro only relies on local sparse linear approximations of the feasible set and therefore avoids optimizing over the entire set at each iteration, which is in sharp contrast to projected gradients or Frank-Wolfe methods. We also empirically evaluate our algorithm on two-player games, where the players are subjected to a shared constraint

    Optimal transport with constraints: from mirror descent to classical mechanics

    Full text link
    Finding optimal trajectories for multiple traffic demands in a congested network is a challenging task. Optimal transport theory is a principled approach that has been used successfully to study various transportation problems. Its usage is limited by the lack of principled and flexible ways to incorporate realistic constraints. We propose a principled physics-based approach to impose constraints flexibly in such optimal transport problems. Constraints are included in mirror descent dynamics using the principle of D'Alembert-Lagrange from classical mechanics. This leads to a sparse, local and linear approximation of the feasible set leading in many cases to closed-form updates.Comment: 14 pages, 8 figure
    corecore